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An important task in mathematical image pro-
cessing is image denoising. Many image denois-
ing algorithms assume that the noise is normally
distributed and additive. Many images, how-
ever, contain noise that satisfies a Poisson distri-
bution. The magnitude of Poisson noise varies
across the image, as it depends on the image in-
tensity. This makes removing such noise very dif-
ficult. We use Bayes’s Law to develop a new de-
noising algorithm, which removes Poisson noise
while preserving image features that other meth-
ods remove.

The general idea behind most denoising meth-
ods is to regard a noisy imagef as being obtained
by corrupting a noiseless imageu. The desired
imageu is then a solution of the corresponding
inverse problem: whichu could f be obtained
from by corruption? Since there is generally more
than one solution, most denoising procedures em-
ploy some sort of regularization. A very success-
ful algorithm is that of Rudin, Osher, and Fatemi
(ROF; [1]), which uses total-variation regulariza-
tion. The ROF model regardsu as the solution to
a variational problem, to minimize the functional

F(u) :=
Z

Ω
|∇u|+ λ

2

Z
Ω
|u− f |2, (1)

whereΩ is the image domain andλ is a parame-
ter to be chosen. The first term is a regularization
term, the second a data-fidelity term. Minimiz-
ing F(u) has the effect of diminishing variation
in u, while keepingu close to the dataf . The size
of the parameterλ determines the relative impor-
tance of the two terms.

Like many denoising models, the ROF model
is most appropriate for signal independent, addi-
tive, Gaussian-distributed noise. Many important

data, however, contain noise that is signal depen-
dent and Poisson distributed. A familiar exam-
ple is that of radiography. The signal in a radio-
graph is determined by photon counting statistics,
which are Poisson distributed. Removing noise of
this type is a more difficult problem. Existing ap-
proaches proceed only under restrictive assump-
tions.

We use Bayes’s Law to derive a model much
like ROF, but with a data-fidelity term that is cus-
tomized for Poisson noise. The result is to seek a
minimizer of

E(u) :=
Z

Ω
|∇u|+β

Z
Ω

(
u− f logu

)
,

whereβ is a constant that determines the relative
effect of the two terms.

We find the minimizer by gradient descent.
That is, we start from some initial choice ofu,
then move in the opposite direction of the deriva-
tive of E. We thus replaceu with u−αE′(u) for
some constantα, and then repeat the process. At
each step, the value ofE(u) will decrease. The
process is continued until the minimum value is
reached.

The derivative of the functionalE is

E′(u) = −div

(
∇u
|∇u|

)
+

β
u
(u− f ).

Compare this with the derivative of the ROF func-
tional (1):

F ′(u) = −div

(
∇u
|∇u|

)
+λ(u− f ).

Notice that the two derivatives are similar, with
λ replaced by the varyingβ/u, which depends on
the reconstructed imageu. This local variation
of the regularization parameter is better suited
for Poisson noise, because the expected noise
increases with image intensity. Decreasing the
value of the regularization parameter increases
the denoising effect of the regularization term in
the functional. This will happen where the values
of u are larger, which is precisely where the noise
level is larger. We thus have a model that is simi-
lar to ROF but with a self-adjusting parameter.
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An example for comparison of our model with the
ROF model. A cross-section of an image (black
line) with Poisson noise added (green line). The
greater the image intensity, the greater the local
noise level.

The figures show the results of applying ROF
and our proposed model to a test image with Pois-
son noise. Cross-sections are shown for greater
clarity. When ROF is used with the parameter
λ as appropriate for the overall measured noise
level, small-scale features are removed along with
the noise. If the regularization strength is de-
creased (by increasingλ) to a level appropriate for
the smaller-scale noise present in regions of lower
image intensity, then the larger-scale noise is not
removed. Our model removes noise at all scales,
while preserving small-scale features in regions
of small-scale noise.
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The ROF model removes noise, but washes out
the bump feature on the sides.

Decreasing the regularization strength of the
ROF model preserves the feature, but doesn’t re-
move larger-scale noise.

Our model removes noise and preserves small-
scale features.
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